Radial basis functions

نویسندگان

  • M. D. Buhmann
  • Justus Liebig
چکیده

Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.

In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...

متن کامل

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

متن کامل

Numerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions

‎In this work‎, ‎we consider the parabolic equation‎: ‎$u_t-u_{xx}=0$‎. ‎The purpose of this paper is to introduce the method of‎ ‎variational iteration method and radial basis functions for‎ ‎solving this equation‎. ‎Also, the method is implemented to three‎ ‎numerical examples‎. ‎The results reveal‎ ‎that the technique is very effective and simple.

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

Adopting the Multiresolution Wavelet Analysis in Radial Basis Functions to Solve the Perona-Malik Equation

Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the ...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000